热门关键词:  催化燃烧  /VOCs吸附/  /废气处理/  /RCO技术/  dddd  布袋
您的位置: 主页 > RTO > RTO焚烧炉 > rto焚烧炉厂家 >

咸阳rto厂家_rto蓄热式焚烧炉

作者:RTO处理小智时间:2021-10-16 16:40 次浏览

信息摘要:

咸阳rto厂家 1蓄热燃烧法有机废气治理系统简介 RTO焚烧炉、RTO、RCO专业生成厂家东莞粤信环保2020年12月30日讯蓄热燃烧装置指将工业有机废气进行燃烧净化处理,并利用蓄热体对待处理...

  咸阳rto厂家

咸阳rto厂家
rto蓄热式焚烧炉

  1 蓄热燃烧法有机废气治理系统简介

  RTO焚烧炉、RTO、RCO专业生成厂家东莞粤信环保2020年12月30日讯蓄热燃烧装置指将工业有机废气进行燃烧净化处理,并利用蓄热体对待处理废气进行换热升温、对净化后排气进行换热降温的装置,通常简称RTO。RTO治理系统因其对有机废气净化效率高、适用范围广、适用废气浓度范围广(较低浓度废气经过适当浓缩后可进入RTO进行处理),是目前固定源VOCs治理主要技术之一。常见蓄热燃烧法有机废气治理系统工艺流程图如图1所示。

  1-废气收集2-废气管道3-预处理设施4-浓缩设备5-蓄热室6-燃烧室7-换热室8-后处理设施9-净化排放

  由于蓄热燃烧法有机废气治理系统内含有的高浓度有机废气存在易燃易爆风险,在治理系统中安全性是必需考虑的因素。

  2 废气收集与输送管道安全

  因有机废气的易燃性和存在爆炸的危险性,治理系统的有机废气浓度应控制在其爆炸下限的25%以下。当RTO进气浓度较高时,应采取措施调整废气中有机物浓度至其爆炸极限下限25%以下,以确保RTO运行安全。当废气浓度波动较大时,应在前端采取稀释、缓冲等措施,确保进入蓄热燃烧装置的废气浓度平稳且低于爆炸下限的25%。

  当系统风管道采用金属材质时应采用光滑内壁金属管、采取法兰间铜片或铜线跨接、系统管道接地等措施,风管内壁禁止涂刷非导电防腐涂层,防止静电产生和积聚。当废气中含有腐蚀性气体时,所有集气罩、管道、阀门和颗粒过滤器均应采用耐腐蚀材料制造或按标准进行防腐处理。除控制处理气体的浓度、温度之外,在管道系统适当位置应安装符合相关规定的阻火装置。管道系统正压段应采取措施防止介质泄漏事故发生。当管道内气体温度超过60℃时,应做隔热保护或相关警示标识。

  3 预处理和后处理部分安全

  当废气中含有易自聚物质或自催化物质时,因其受热易发生自聚或自反应,导致蓄热体堵塞、系统压降上升或自燃事故,故此类废气不宜直接利用蓄热燃烧法进行处理。

  废气预处理设施通常是对废气中的粉尘、酸、碱、易自聚物质、大分子物质废气、水分、含氯物质、漆雾等进行预处理。当有机废气中含有树脂、颗粒物、固化剂、高沸点芳烃等容易在管道输送过程中形成颗粒物时,应按物质的性质选择合适的吸收、吸附和过滤等预处理措施。后处理部分通常是对高温燃烧生成的NOx或处理含硫或含卤素有机物产生的二氧化硫、卤化氢气体。除了吸收装置之外,治理系统与主体生产装置之间、与储罐收集系统之间应安装阻火器(防火阀),阻火器的性能应符合相关标准的规定

  袋式除尘器处理高温炽热含尘气体时,在除尘器之前应设有火花捕集器,处理易燃易爆含尘气体应选用抗静电滤材并对外壳接地,且应设置防爆泄爆设施。除尘器过滤器应设置压差计,当压差超过设定范围时,应立即清理或更换过滤材料。应做好处理设施防雷防静电措施,根据不同处理设施分析其存在的安全风险并采取相应防护措施。对于预处理后湿度较大的废气应先采取除湿措施后再处理。

  4 浓缩部分安全

  浓缩吸附材质一般选择活性炭或沸石转轮,但活性炭本身在高温下容易自燃不建议选择。对于沸石转轮应关注吸附过量有机废气后在高温状态下低闪点有机废气燃烧现象,进入转轮吸附区的废气温度宜控制在40℃以下,脱附风温度宜为180~220℃,不应高于300℃。应关注高沸点有机溶剂油雾过多堵塞转轮的情况,定期检查及校正转轮脱附温度,在进入转轮气室时应按照受限空间安全管理要求落实安全管理措施。转轮气室应设置温度监控和自动连锁控制系统及N2、消防水等自动灭火设施及防雷防静电设施。

  5 蓄热室燃烧室换热器部分安全

  蓄热通常有两室蓄热、三室蓄热和旋转式蓄热3种,辅助燃料通常有天然气、液化石油气、柴油和电加热等方式,不论何种燃料蓄热燃烧装置,均须设置过载、温度过热保护、防爆泄压装置等安全措施。燃料供给系统应设置高低压保护和泄漏报警装置。应具有过热保护功能并设置安全可靠的火焰控制系统、温度监测系统、压力控制系统等。应安装符合规定的防雷防静电设施,具备短路保护和接地保护功能,接地电阻应小于4Ω。装置应进行整体保温,隔热、保温层应采用阻燃材料,外表面温度应低于60℃,炉门、检修门、防爆口、传感器安置部位等局部区域应低于70℃。

  为防止炉体残留废气发生爆炸风险,在开机点火和导入废气前应对炉体进行吹扫。燃烧室和蓄热室前的管道应设置压力计和安全泄放装置(安全阀或爆破片装置)。RTO气体进出口、燃烧室、蓄热室和换热器均应设具有自动报警功能的多点温度检测,并与系统连锁温度调节。应设置安全放散装置,燃烧室、蓄热室温度检测应与点火报警系统联锁,当温度过低或火焰熄灭时立即发出报警信号,关闭废气进气阀门并启动安全放散装置。应设置超温强制排风措施,进入燃烧室的废气浓度控制在废气的爆炸下限的25%以内,燃烧室、蓄热室进口设置废气浓度检测和报警联锁装置,当废气浓度达到爆炸下限的25%时应能立即发出报警信号并启动安全放散装置。

  6 末端排放部分安全

  治理系统排气筒的采样平台应牢固并设置符合标准的防护栏杆,护栏底部应设置踢脚板,对于高温部分管道应设置防烫措施和警示标识。对高温部分管道上的调节阀应选用耐高温阀门并定期检查,发现异常及时处理。对非防雷保护范围的排气筒,应装设避雷设施。

  7 其他安全要求

  由于蓄热燃烧装置在高温下操作,存在爆炸的危险,在场址选择上应远离油库、储油槽、溶剂存放地以及其它危险化学品存放地。由于存在爆炸和着火的危险,系统的消防设计应纳入工厂的消防系统总体设计。消防通道、防火间距、安全疏散的设计和消防栓的布置应符合相关规定,按照规定配置移动式灭火器。

  必须在治理工程与主体生产装置之间安装阻火器或防火阀,压缩空气系统应设置低压保护和报警装置。输送高浓度含尘废气要选择除尘风机,输送高温废气应选择高温风机,输送有腐蚀性气体的应选择防腐风机,输送有爆炸和易燃气体的必须选用具有防爆功能的风机、电机,还应做好减震措施,风机、电机和现场的电气仪表等应满足现场防爆要求。

  RTO应设置自动控制,应具有自动记录温度变化曲线的功能以备查。根据工艺要求对系统废气浓度、温度、压力和流量等参数进行自动检测和控制。RTO装置设置连锁应急排气筒,蓄热燃烧装置的炉膛应设置超温强制排风措施。废气治理设备设置区域宜按相关标准设置可燃气体报警器。

  rto蓄热式焚烧炉

  羧基丁苯胶乳(XSBRL)是丁苯胶乳(S/BLatex)的改性产物,是以苯乙烯、丁二烯、不饱和羧酸(如丙烯酸或甲基丙烯酸等)及各种助剂的作用下经乳液共聚而成带有蓝紫色光泽的乳白色合成胶乳(水分散体),能与水、颜料、助剂等其它粘合剂及填充料混溶性较好,特别是加人了极性基因(羧基)后,使产品粘接性、适用性、成膜性大大提高,具有良好的机械和化学稳定性,有较强的粘结力,是一种优良的水基粘合剂,羧基丁苯胶乳广泛用于铜版纸、终底纸板、造纸、木材、喷胶棉、服装、地毯、无纺布、制革和建筑防水等领域。

  而针对生产过程中排出含有少量未反应原料(苯乙烯,丁二烯,丙烯酸)和挥发性有机物(VOC)等废气的处理,多采用水汽分离器排气管排出,通过锅炉焚烧后高空排放,而随着节能环保的要求不断提高,一种新型的废气处理装置一一蓄热式氧化焚烧炉(RegenerativeThermalOxidizer,RTO)在羧基丁苯胶乳生产线上率先得到了应用。

  蓄热式氧化焚烧炉英文名为“RegenerativeThermalOxidizer“,简称为“RTO”。

  其原理是可燃烧的有机物废气在760—1000。C度发生热氧化反应,生成二氧化碳和水。废气首先通过蓄热体加热到接近热氧化温度,而后进入燃烧室进行热氧化,氧化后的气体温度升高,有机物基本上转化成二氧化碳和水。净化后的气体,经过另一蓄热体,温度下降,达到排放标准后可以排放,同时另一蓄热体也能被净化后的废气加热,不同蓄热体通过切换阀或者旋转装置,随时间进行转换,分别进行吸热和放热,从而保证RTO连续稳定地周期性运行。本文介绍的首次在羧基丁苯胶乳生产线废气处理装置RTO为3室蓄热氧化焚烧炉。

  1RTO主要设备及处理过程

  1.1RTO主要设备

  新鲜风风机,助燃风机,3个蓄热室,1个燃烧室,6个主气流切换阀,2个除沫器,一套燃烧系统,一套PLC自动控制系统。废气处理过程:RTO启动后,首先新鲜风风机启动对蓄热体及燃烧室进行预吹扫180s,将焚烧炉内的残留废气排出,然后燃烧系统内的点火器点火在燃烧室升温,一般燃料可以采用天然气,液化气。升温至780℃便进入待处理模式,如果废气风机出口可燃气体探测器FI’A(Flammabilityanalyzer)读数≤25LEL%则自动切换进入处理模式。

  1.2处理模式三个阶段

  I.2.1阶段一

  废气通过蓄热体1被预加热,然后进入燃烧室燃烧,蓄热体3中残留未处理废气被净化后的气体反吹回燃烧室进行焚烧处理,分解后的废气经过蓄热体2排出,同时蓄热室2被加热。

  1.2.2阶段二

  废气通过蓄热体2被预热,然后进人燃烧室燃烧,蓄热体1中残留未处理废气被净化后的气体反吹回燃烧室进行焚烧处理,分解后废气经过蓄热体3排出,同时蓄热室3被加热。

  1.2.3阶段三

  废气通过蓄热体3被预热,然后进人燃烧室燃烧,蓄热体2中残留未处理废气被净化后的气体反吹回燃烧室进行焚烧处理分解后废气经过蓄热体1排出,同时蓄热室1被加热。

  如此周期性运行。废气在燃烧室内氧化分解属RTO长期处于自燃状态,最大的保证能量循环利于放热反应,当燃烧室内温度超过850。C,则不需要用。燃料进行加热,通过进口废气浓度的调节可以保持RTO长期处于自燃状态,最大的保证能量循环利用。

  2RTO处理前后废气组成

  2.1废气主要在羧基丁苯胶乳生产过程的汽提部分产生,在该工序,未参加反应的原料大部分被真空汽提出来,释放到废气管线中,主要成分见表1。

  2.2RTO运行参数

  RTO运行主要过程数据运行成本,在废气平均负荷为4700Nm3/h的情况下,每年的运行成本是10万元,远比锅炉焚烧及其他方法节省。

  2.3根据检测,RTO处理后的废气完全达标排放,详见表3。

  3RTO的控制

  RTO控制系统采用西门子S7PLC程序控制。可分为自动/手动,就地/远程操作,较常见的是自动就地控制,因为大部分报警都需要现场确认故障原因,如:压缩空气压力低,浓度高报等,本文介绍的RTO控制完全由PLC控制,燃烧室,蓄热体的温度,RTO进出口差压,进气温度,浓度,排出净化气温度,各切换阀门运行状况,风机频率,速度等都可以通过PLC控制面板监控,系统本身已经设置好温度,压力等报警上下限,保证装置在安全条件下运行。

  根据RTO在羧基丁苯胶乳生产线上近2年的应用,其优点如下:

  (1)净化效果高,三室可以达到99%;

  (2)换热效果高,排气余温低,主要因为陶瓷蓄热体比表面积较大(689m2/m3);

  (3)废气处理量灵活可变,RTO处理能力最大风量为10000Nm3/h,当生产过程中废气释放量较少时可以降低风机频率,相应地当废气浓度较高时可增大新鲜风的补充量,降低废气浓度,保证燃烧室内废气浓度。

  (4)操作费用低,一定时间内不需要补充燃料,能量重复利用;

  (5)PLC自动控制,操作简单,稳定性高。

  随着节能降耗及环保要求的不断提高,RTO将在丁苯胶乳生产线上得到广泛应用。

返回列表 本文标签: